Nonlinear electron magnetohydrodynamics physics. III. Electron energization

نویسندگان

  • K. D. Strohmaier
  • J. M. Urrutia
  • R. L. Stenzel
چکیده

Wave-particle interactions of low-frequency whistler modes with wave magnetic fields exceeding the ambient field are investigated experimentally. These highly nonlinear modes are excited with magnetic loop antennas in a large magnetized afterglow plasma. While the nonlinear wave properties are described elsewhere, the present paper focuses on the modification of the electron distribution function by the whistler waves. When the electron current flows in regions of magnetic nulls, such as in spheromak and field-reversed configurations FRCs , strong electron energization is observed. When the whistler modes are created by electron Hall currents, such as in whistler mirrors, no significant energization occurs. The electron temperature can be raised locally by an order of magnitude. Non-Maxwellian distributions with energetic tail electrons are observed. Electron energization to 10 eV produces visible light emission whose time and space dependence is mapped. The light source travels with the subthermal speed of whistler spheromaks. When counterpropagating spheromaks collide, the resultant FRC produces strong local heating and light which dissipates its free magnetic energy. © 2008 American Institute of Physics. DOI: 10.1063/1.2903070

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turbulent impulsive magnetic energy release from electron scale reconnection

Magnetic reconnection may occur as bursts of nonlinear plasma dynamics on the electron collisionless skin length scale de=c / pe, during which a large fraction of the magnetic energy is converted to plasma thermal energy and plasma flow energy. An example of such a bursty energy release event is given with a simple set of electron Hall equations. The energization mechanism is the cross-field co...

متن کامل

A four-field model for tokamak plasma dynamics

A generalization of reduced magnetohydrodynamics is constructed from moments of the Fokker-Planck equation. The new model uses familiar aspect-ratio approximations but allows for (i) evolution as slow as the diamagnetic drift frequency, thereby including certain finite Larmor radius effects, (ii) pressure gradient terms in a generalized Ohm's law, thus making accessible the adiabatic electron l...

متن کامل

Formation of electron holes and particle energization during magnetic reconnection.

Three-dimensional particle simulations of magnetic reconnection reveal the development of turbulence driven by intense electron beams that form near the magnetic x-line and separatrices. The turbulence collapses into localized three-dimensional nonlinear structures in which the electron density is depleted. The predicted structure of these electron holes compares favorably with satellite observ...

متن کامل

Inertial magnetohydrodynamics

Article history: Received 2 November 2014 Accepted 5 December 2014 Available online 9 December 2014 Communicated by F. Porcelli A version of extended magnetohydrodynamics (MHD) that incorporates electron inertia is obtained by constructing an action principle. Unlike MHD which freezes in magnetic flux, the present theory freezes in an alternative flux related to the electron canonical momentum....

متن کامل

Solution of strongly nonlinear oscillator problem arising in Plasma Physics with Newton Harmonic Balance Method

In this paper, Newton Harmonic Balance Method (NHBM) is applied to obtain the analytical solution for an electron beam injected into a plasma tube where the magnetic field is cylindrical and increases towards the axis in inverse proportion to the radius. Periodic solution is analytically verified and consequently the relation between the Natural Frequency and the amplitude is obtained in an ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008